THERMAL STATE OF DYNAMIC CALORIMETERS

G. N. Dul'nev and N, V. Pilipenko UDC 536.662

1t is established here how the thermal state of a calorimeter affects the accuracy of
power measurements, A mathematical model of a dynamic calorimeter is proposed
and its thermal state is analyzed,

In {1-3} the authors have proposed a method and described a new device, a dynamic biocalorimeter,
for measuring thermal fluxes variable in time which are generated by energy sources of a diverse nature
such as, for example, biological sources.

The thermophysical model is shown in Fig. 1: it consists of a chamber 1, a shell 3, and an insula-
tion 4. A closed thin interlayer of air 2 separates the shell from the chamber,

It will be assumed that the power of the source P(r) inside the chamber can vary with time according
to any law, The energy generated by the source passes through the chamber walls and heats them up,
whereupon it enters the shell and raises its temperature.

Furthermore, the calorimeter may be exposed to various forms of extraneous thermal noise such as,
for example, variations in the ambient temperature ta(r) around it, or a thermal flux g(7) appearing at the
outer surface of the device., Extraneous thermal noise may be regarded as a second cause of variations in
the thermal state of the shell and, consequently, of the entire device,

As has been shown in [1], the following equation relates the power P(T) of an energy source to the
thermal state of the chamber and the shell: '
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Inasmuch as extraneous noise has been accounted for in Eq. (1), this noisé should not affect the re-
sults of measurements of power P generated by the source. Consequently, any noise level is theoretically
permissible. The error in the power measurement is different, however, at different noise levels and de-
pends on the noise characteristics, In order to demonstrate the validity of this statement, we derive a
formula for calculating the error in a power measurement, It will be assumed, moreover, that systematic
errors have been either eliminated or taken into account by corresponding correction terms, and that ran-
dom errors are distributed normally, From Eq. (1) and according to [4] we then have (see Appendix):
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Parameters q, b, ¢ are only weakly dependent on the thermal state
of the chamber and shell so that, to the first approximation, they may
be considered constant, A variation in the error AP/P during a test
is then related only to the variation in quantities X and Y, i.e., to the
variation in the thermal state of the chamber and the shell. The error
as a function of the thermal state is shown in Fig. 2, based on Eq. (2)
for one of the calorimeters described in [1, 7]. :
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Fig. 1. Thermophysical mod- According to Eq. (2), the error AP/P becomes infinite as
el of the dynamic calorimeter, X/Y — (—1) ‘

lim —— = oo.
XiY>—1 P
A change of X from 0 to 1 (Fig. 2) at Y = —2, forexample, causes the error to increase from 3.5 to
7.0%, but AP/P = » when X = 2. The error depends also on the accuracy class of the measuring instru-
ments, The minimum error AP/P = 1.49 in Fig. 2 corresponds to instruments of class 1.0 accuracy., It
can be shown, with the aid of Eq. (2), that instruments of class 0.5 accuracy will reduce the error in power
measurements to AP /P = 0.8%,.

Thus, an analysis of Eq, (2) confirms that the error in power measurements depends on the calorim-
eter design parameters m and F, on the accuracy class of the instruments, and on the thermal state of
both chamber and shell,

We now proceed to analyze the thermal field of the calorimeter. Let us impose here the following
constraints: (a) the thermal flux q is uniformly distributed over the insulation surface and (b) the insulation
may be regarded as a flat wall.

Let ﬁs then formulate the law of energy conservation for the various calorimeter components, The
energy Pdr coming from the source during the time dr both changes the enthalpy of the chamber Cgpdtep
and passes on through the gap to the shell kSgp(tch—tsh)d7, i.e.,
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The energy kSch(tch—tgn)dT, which has passed through the gap, both changes the enthalpy of the shell
Cghdtsh and passes on to the insulation (— 2;(9t;/ 8X)|x = ¢Sgh), i.€.,

dtsh‘ o afi i S 4
dt "1 dx { she ( )

ksch(tch— fsh‘) = Csh

x=0

The temperature field of the insulation is described by the Fourier equation, whichbecomes here
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by virtue of assumption (b). The boundary condition at the outer surface of the insulation will be written
as follows:

_ 7\1 afi - = (ti - tsh)x=l - q (T)‘ (6)
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The condition
ti Jx=0 = tsh (7)

must be satisfied at the boundary between shell and insulation. With initial conditions added to Egs. (3)-
(7), we have now a mathematical model of the calorimeter. Solving this system of equations for various
forms of functions P(r), q(7), and t5(T), one can find the relations X(r1) = toh —Tgh and I(1) = dtgp/dT
determining the thermal state of the calorimeter., Such a solution of Egs. (3)-(7) is fraught with serious
mathematical difficulties, however, and for the purpose of design calculations, therefore, we will simplify
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Fig. 2. Error AP/P as a function of the thermal state of the
calorimeter,

the thermophysical and thus also the mathematical model of this calorimeter, First of all, we will agssume
that variations in the ambient temperature constitute the only source of extraneous noise and that there is
no thermal flux q on the outside, We then modify the model as follows: the thermal capacity of the insula-
tion Cj will be referred to the thermal capacity of the shell Cgh and the thermal resistance of the insulation
R4 will be added to its outer thermal resistance Re = (S1)™!, namely

C=C; +Cq R=Ry :Re @®)

Thus, we have replaced a system of four media (chamber —gap—shell —insulation) by a system of three
media (chamber —gap—effective shell) whose temperature field is described by the following equations:
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Substituting for top its value from (10) into Eq. (9b), we have now
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The solution to Eq. (11) for A% =d?—4g > 0 is [5, 6]
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Fig. 3. Thermal state (X, Y) and error f = AP/P as func-
tions of time: (a) during periodic variations in the ambient
temperature (A = 20°K, T =1 h), (b) after thermal shock
(#a = 10°K).

If function ¢(u) is given, then Eqs. (10) and (12) yield relations X(7) and Y(r) = [I/m¢h. In other
words, when the power P(7) and the ambient temperature t;(r) are known functions of time, then the
thermal state of the device can be determined,

We will next derive expressions describing the thermal state of the device in two most practical
cases, namely under a periodically varying ambient temperature and under a so-called thermal shock,
We will also assume that the power of the source inside the chamber remains constant,

1. When the ambient temperature varies periodically
O, =1y — () = Acoser, o=2n/T
then Egs. (10) and (12) yield for a time long after the first instant
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2. Now we consider a thermal shock. Let the ambient temperature ¢, remain equal to zero during
the time interval 0 < T =< 7,. At some instant of time 7 = 7, the ambient temperature changes suddenly
to 19;,. The calorimeter then undergoes a thermal shock, This can be expressed analytically as follows:
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At any instant of time the thermal state of the device can be described by the following expressions: at a
time 0 =7 s 7y
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The dynamic calorimeter described in [7] had been developed at the Thermophysics Department of
the Institute of Precision Mechanics and Optics in Leningrad for the study of heat transfer in warm-blooded
animals, the results of design calculations are shown in Fig. 3a, b, Knowing the thermal state has also
made it possible to select the parameters of the chamber, the shell, and the insulation for holding the er-
ror AP/P in power measurements within prescribed limits,

In conclusion, we note that the relations derived here are valid generally and can be used for calcu-
lating the thermal state of various devices to which the model in Fig. 1 applies.
APPENDIX

Equation (2) can be derived as follows. We know- [4] that the mean-squared error AP in a power
measurement is

oy (o Tl (ot o0

where A = 1/mF, B=1/F, Il = dtch/dr, and function f ia given in the form (1):
= (A, B, 1T, {y— ten).

Dividing both sides of (14) by P from (1) yields an expression for the mean-squared error AP/P. It
then becomes necessary to calculate all the derivatives in (14). The relative errors Am/m and AF/F here
are found by transforming the formulas

m— In (tc — tsh)a —In (tCh_ tsh)g , F= (i(g‘_ tsh ) .
Tg— Ty P 3

A proof of these two formulas is given in [7]. Algebraic transformations then yield formula (2).

NOTATION

P is the power generated by a source, W;

T is the time, sec;

Cch  is the thermal capacity of the chamber, J/°K;

Sch is the area of the outer surface of the chamber, m?;

Cgh is the thermal capacity of the shell, J/°K;

Sgh  is the area of the outer surface of the shell, m?

k is the coefficient of heat transmission through the gap from the chamber to the shell, W/m?
teh is the chamber temperature, °K;

tsh is the shell temperature, °K;



ty is the insulation temperature, °K;

ta is the ambient temperature, °K;

A is the thermal conductivity of the insulation, W/m -°K;

a is the thermal diffusivity of the insulation, m?/sec;

X is the space coordinate, m;

a is the coefficient of heat transfer at the interface between the insulation and the
ambient medium, W/m?-°K;

a(r) is the thermal flux density, W/m?;

X,Y are the parameters which characterize the thermal state of a device, °K;

I = dtyp/dT is the rate of change of the chamber temperature, °K/sec;

Rj is the thermal resistance of the insulation, °K/W;

Och is the thermal conductance from chamber to shell, W/°K; .

g is the thermal conductance from chamber to shell with the insulation taken into ac-
count, W/°K;

C is the total thermal capacity of shell and insulation, J/°K;

Ag, Ay are the integration constants, °K;

A is the amplitude of fluctuations of the ambient temperature, °K;

T is the period of fluctuations of the ambient temperature, sec;

Ry is the total thermal resistance from the chamber to the ambient medium, °K/W;

$ch = teh—tg is the superheat of the chamber above its initial temperature t;, °K;

Ygn = tsh—tp is the superheat of the shell above its initial temperature t;, °K;

gy =ta—tg is the superheat of the ambient mediumn above its initial temperature t;, °K;

f=aP/P is the error in a power measurement, %;

Ateh,is Atsh, i, ATi

(AP /P)¢

Subscripts

are the absolute errors in temperature and time measurements (i = 1, 2, 3, 4, c),
°K and sec respectively;
is the error in the power calibration, ¢.

1,2 denote temperatures during measurement;
3 denotes temperature in the steady mode;
4 denotes temperature in the transient mode;
c denotes temperature during calibration.
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